If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-12v-40=0
a = 2; b = -12; c = -40;
Δ = b2-4ac
Δ = -122-4·2·(-40)
Δ = 464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{464}=\sqrt{16*29}=\sqrt{16}*\sqrt{29}=4\sqrt{29}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{29}}{2*2}=\frac{12-4\sqrt{29}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{29}}{2*2}=\frac{12+4\sqrt{29}}{4} $
| -5y+4+2y=16 | | 5x-7=x+53 | | 2x(5+3)=4 | | 12-p=9+.5p | | (3/4y^2)-11=232 | | (9x+2)+(7x+18)=180 | | 6×n=36+16-4 | | -2x+4=-7x+9 | | |2/3x-6|+5=13 | | 20+m=25 | | x+x+2+x+4=28 | | 7/w=56 | | A={xEN/5x+550 | | 111+98+50+36+x=360 | | 59+80+59+54+2x+x=360 | | 2(1+7k)=-20 | | s/7=21 | | (4u+4)(u-2)=0 | | x/2-11=16 | | t/12=9 | | 165=(x+10)(x+6) | | 37=s/5 | | 7x-15=3x=1 | | x-18=0.25x | | 0-18=0.25x | | r/4=23 | | 2^x-3=40 | | m=4.50 | | (2x-2)-180=45 | | 18=u/8 | | t/10=14 | | 0.10(7-x)+0.5(x)+0.25(1/2x)=5.90 |